OJIP Protocol

The AquaPen device offers the possibility to capture rapid fluorescence transient – OJIP, which occurs during exposure of photosynthesizing organisms to high irradiance. The FluorPen software enables data downloading to a personal computer and subsequent OJIP analysis.

Abbreviation	Explanation
Bckg	Background
Fo	$F_0 = F_{50\mu s}$, fluorescence intensity at 50 μs
Fj	F _j = fluorescence intensity at J-step (at 2 ms)
Fi	F _i = fluorescence intensity at i-step (at 30 ms)
Fm	F _m = maximal fluorescence intensity
Fv	$F_v = F_m - F_0$ (maximal variable fluorescence)
Vj	$V_j = (F_j - F_0) / (F_m - F_0)$
Vi	V _i = (F _i - F ₀) / (F _m - F ₀)
F _m / F ₀	
Fv / Fo	
Fv / Fm	
M ₀ or (dV/dt) ₀	$M_0 = TR_0 / RC - ET_0 / RC = 4 (F_{300} - F_0) / (F_m - F_0)$
Area	Area between fluorescence curve and F_m (background subtracted)
Fix Area	Area below the fluorescence curve between $F_{40\mu s}$ and F_{1s} (background subtracted)
Sm	$S_M = Area / (F_m - F_0)$ (multiple turn-over)
Ss	S_s = the smallest S_M turn-over (single turn-over)
Ν	$N = S_M \cdot M_0 \cdot (1 / V_J)$ turn-over number Q_A
Phi_P ₀	$Phi_P_0 = 1 - (F_0 / F_m) (or F_v / F_m)$
Psi_0	Psi_0 = 1 - V _J
Phi_E₀	Phi_E ₀ = (1 – (F ₀ / F _M)) . Psi_0
Phi_D₀	$Phi_D_0 = 1 - Phi_P_0 - (F_0 / F_m)$
Phi_Pav	$Phi_Pav = Phi_P_0 (S_M / t_{Fm}) t_{Fm} = time to reach F_m (in ms)$
ABS / RC	ABS / RC = M_0 . (1 / V_J). (1 / Phi_P ₀)
TR ₀ /RC	$TR_0 / RC = M_0 . (1 / V_J)$
ET ₀ / RC	$ET_0 / RC = M_0 . (1 / V_J) . Psi_0$
DI ₀ / RC	$DI_0 / RC = (ABS / RC) - (TR_0 / RC)$

The OJIP	protocol	includes	the f	following	extracted	and	technical	parameters*:	•
	p1000001	maacs	CIIC I	Olio Willia	CALIACTER	ana	ccenticat	parameters	•

Formulas Derived From:

R.J. Strasser, A. Srivastava and M. Tsimilli-Michael (2000): The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Probing Photosynthesis: Mechanism, Regulation and Adaptation (M. Yunus, U. Pathre and P. Mohanty, eds.), Taylor and Francis, UK, Chapter 25, pp 445-483.